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We give experimental evidence that a delayed feedback control strategy is able to efficiently enhance the
coherence of an experimental self-sustained chaotic oscillator obtained from a CO2 laser with electro-optical
feedback. We demonstrate that coherence control is achieved for various choices of the delay time in the
feedback control, including values that would lead to the stabilization of an unstable periodic orbit embedded
within the chaotic attractor. The relationship between the two processes is discussed.
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A very relevant feature that characterizes self-sustained
oscillators is the coherence, or constancy of their oscillation
frequency. Its control is a fundamental task in various prac-
tical applications, e.g., at the moment of improving the reli-
ability of electronic and optical sources, as well as for en-
hancing the quality of mechanical clocks. For coupled or
forced chaotic oscillators it represents a crucial parameter
determining their capability to give rise to a phase synchro-
nized motion[1–3].

Phase synchronization(PS) refers to a process related to
the presence of two distinct self-sustained oscillators whose
original different rhythms are adjusted by means of a weak
coupling, even when the corresponding amplitudes are only
feebly correlated. In the chaotic case, it has been shown that
PS occurs only for some phase coherent oscillators[1,2],
while systems having a rather broad distribution of time
scales in their unstable periodic orbits only display imperfect
PS [4].

By calling fstd the phase of an oscillator, phase coherence
can be quantified by means of the so-called phase diffusion
coefficient

Df ~ lim
t→`

1

t
kffstd − kfstdlg2l, s1d

wherek¯l stays for a time average. While the above defini-
tion rigorously holds only for periodic oscillators subjected
to noisy Gaussian fluctuations, it has been recently proposed
that such a measure could also be applied for chaotic oscil-
lators, under the assumption that the deterministic chaotic
fluctuations of the phase could be considered as noisy Gauss-
ian contributions[3,5]. In particular, it has been numerically
shown that a delayed feedback control strategy[6] may
modify the value ofDf for nonphase coherent chaotic oscil-
lators, leading in some cases to an enhancement of the co-
herence of the motion[5], inducing a drastic reduction ofDf

and allowing such otherwise nonphase synchronizable oscil-
lators to eventually phase synchronize with external forcings.
The fact that control of coherence can improve phase syn-
chronizability is a relevant property, since PS of chaotic sys-
tems is a rather ubiquitous phenomenon in nature[7], in
controlled laboratory experiments[8], and in space extended
or infinite dimensional systems[9].

In this paper we give, to our knowledge, the first experi-
mental evidence of control of coherence in a self-sustained
chaotic oscillator, and we discuss how this process is related
to the stabilization of unstable periodic orbits(UPOs) em-
bedded within a chaotic attractor[10].

The experimental setup is shown in Fig. 1(a). It consists
of a single mode CO2 laser with electro-optic feedback. Pre-
cisely, a slow flow gas mixture of CO2 at a pressure of
28 mbar, pumped by a dc discharge current of 6 mA(the
pump threshold for the lasing action being 3 mA), is inserted
within the laser cavity defined by a partiallysM2d and a
totally sM1d reflecting mirror. The cavity houses also an an-
tireflection coated CdTe electro-optic modulator(EOM) for
amplitude modulations. The laser output intensity is detected
by a fast HgCdTe diode detectorD whose electric output is
sent into a feedback loop, including an amplifierR and a bias
voltageB0. The output of the amplifier is taken to drive the
EOM component. It is known that depending on the two
control parameters of the feedback loop(the gainR and the
bias voltageB0 on the amplifier), different chaotic regimes
can be observed for the behavior of the laser output intensity
[11,12]. In this work we set the control parameters in condi-
tions where the laser intensity is locally confined around an
unstable fixed point(R=9 andB0=400 mV). In these condi-
tions a chaotic regime is reached after a sequence of subhar-
monic bifurcations on a limited cycle originated from a Hopf
bifurcation [13]. The resulting temporal evolution of the la-
ser intensityI can be seen in Fig. 1(b). Furthermore, a time
delayed embedding reconstruction of the corresponding at-
tractor(with embedding timet=6 ms) is shown in Fig. 1(c).
In these experimental conditions, the dynamics can be con-
veniently represented by a six-variable model system[14].
For the parameters used in our experiment, such a model
gives a maximum Lyapunov exponentL of about 11 900 s−1.
The corresponding Lyapunov times1/Ld amounts to about
1.2 times the length of the period 1 UPOsT1.70 msd.

In order to control the coherence of the chaotic oscillator,
we use a second feedback loop, consisting of a digital delay
line with 12 bit amplitude resolution and a delay timeTd that
can be set with 0.5ms of resolution. The difference between
the laser output intensity signalIstd and its delayed version
Ist−Tdd is amplified with a gainG and used as an additive
signal in the main feedback loop[see Fig. 1(a)]. This scheme
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is an experimental implementation of the so-calledtime-
delayed autosynchronization(TDAS) method proposed by
Pyragas[6], which is able to stabilize UPOs embedded
within the chaotic attractor, for suitable choices ofTd andG.
The reliability of TDAS for UPOs stabilization in lasers was
experimentally proven in both the externally driven[15] and
the autonomous[14] cases.

The unperturbed chaotic dynamics embeds an infinite
number of UPOs. In Fig. 1(d) we report the error function
ErrsTdd=s1/Ndoi=1,. . .,NuIstid− Isti −Tddu for an N=5000 data
series of the output time intensityIstd with no feedbacksG
=0d and sampled with a time intervalti − ti−1=0.4 ms. The
local minima of ErrsTdd mark the values ofTd that corre-
spond to UPO’s periods. In particular, Fig. 1(d) shows that
the length of the period 1(the period 2) UPOs is approxi-
mately equal toTd=70 ms sTd=140msd. In the following we
will set the delay timeTd of the control loop at 70, 100, and
140 ms, and vary the gainG for the three cases. In particular,
fixing Td=70 ms sTd=140msd, i.e., matching the periodT1

(the periodT2), and increasingG would eventually lead to
the stabilization of period 1(of period 2) UPO, while for
Td=100, we are in working conditions in which no UPOs
can be stabilized[as it can be seen from Fig. 1(d)].

In all measurements, we introduce a suitable threshold
Q=0.205. When the output intensity crossesQ for the nth
time with a positive temporal derivative, we associate such
an event to thenth crossing of the chaotic trajectory on the
Poincaré section of the attractor, and record the correspond-
ing value of the timetn. As illustrated in Fig. 1(b), this strat-
egy allows us to easily calculate the sequencehtnj of recur-

rent times or crossing time intervals on the Poincaré section
stn; tn− tn−1d. The values ofQ has been carefully selected to
assure that the signal encounters the Poincaré section once at
each oscillation.

By linear interpolation between successive crossings on
the Poincaré section, the sequencehtnj gives immediately a
measure of the instantaneous phasefstd of the chaotic oscil-
lator [3],

fstd = 2pk + 2p
t − tk

tk+1 − tk
stk , t , tk+1d, s2d

where the integerk marks thekth crossing of the trajectory
on the Poincaré section.

By recording long sequences of recurrent times(about
10 000 for each measurement), we are able to calculate the
phase diffusion coefficient(1), as well as the coherence fac-
tor [16]

C =
ktl

fshtnjg1/2, s3d

wherektlsshtnjd denotes the average value(the standard de-
viation) of the distribution of the recurrent timeshtnj.

We start by settingTd=100ms and gradually increasing
G. In this condition,Td is far from matching the length of the
period 1 UPO, and therefore no values ofG can stabilize a
UPO. Figure 2(a) reports the coherence factorC [Eq. (3)] in
logarithmic scale vs the gainG in the control loop. As it can
be seen the coherence factor increases monotonically, as the

FIG. 1. (a) Experimental setup.M1 and M2,
mirrors; EOM, electro-optical modulator;D, di-
ode detector;Td, delayer;G and R, amplifiers;
andB0, applied bias voltage.(b) Snapshot of the
time sequence of the output intensityI (in arbi-
trary units) for the uncontrolled case. The dashed
line represents the level taken for determining
passages onto the Poincaré section(with the ad-
ditional condition of the signal having a positive
temporal derivative). Points depict the sequence
of passage times onto the Poincaré section. The
arrow marked with the labelti illustrates the way
in which the sequence of time intervals between
two successive crossings of the Poincaré section
has been obtained.(c) Time-delayed embedding
reconstruction of the attractor corresponding to
the uncontrolled case. Both axes are in arbitrary
units. The embedding time ist=6 ms. (d) Error
function ErrsTdd (in arbitrary units, see text for
definition) vs Td (in micro second) calculated
from a long data series of the output intensity
with no feedbacksG=0d.
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gain factor increases. Figure 2 shows time delayed embed-
ding reconstructions of the attractor forG=0.01 (b), G
=0.07 (c), andG=0.1 (d). Looking at Fig. 2(c), one easily
realizes that the control loop forces the appearance of a still
chaotic motion, but with a higher coherence with respect to
the unperturbed dynamics. Furthermore, by comparing Fig.
2(c) with Fig. 2(b), it can be seen that the main topological
features of the chaotic attractor are only weakly changed,
despite an improvement of a factor 5 in the coherence factor.
A further increase in the gain factor produces a highly coher-
ent motion that is developing very close to a limit cycle[Fig.
2(d)], thus destroying the main topological features of the
original attractor.

A more quantitative analysis of the situation can be ex-
tracted by looking at Fig. 4(b), where the phase diffusion
coefficient Df [Eq. (1)] is reported vs the gainG. In this
figure, one can see that increasingG from 0.01 to 0.1 results

in a giant improvement of the coherence of the motion, in
which Df is reduced by almost two orders of magnitude.

A different scenario emerges when settingTd=70 ms in
the control loop. Now,Td matches exactly the length of the
period 1 UPO, and therefore the control loop eventually
leads to the stabilization of such a UPO forG.0.3. As a
result, coherence control here can be seen as a preliminary
control step in the transition toward the stabilization of the
period 1 UPO. The coherence factorC in logarithmic scale
vs G is reported in Fig. 3(a). Initially sGø0.1d there is no
apparent improvement in the coherence of the recurrent
times sequence. A typical attractor in this regime is shown in
Fig. 3(b). Around G=0.12 the system sets in a chaotic state
corresponding to an even less coherence in the recurrent
times sequence. The corresponding chaotic attractor is shown
in Fig. 3(c). Finally, for G.0.12 we enter the stabilization
process of the period 1 UPO, in which the coherence factor
increases monotonically. Figure 3(d) shows the time-delayed
embedding reconstruction of the attractor just before the con-
trol of the period 1 UPO.

The phase diffusion coefficient behavior is reported in
Fig. 4(a), where one observes a drastic reduction inDf in the
range 0øGø0.08. Later,Df seems to be quite insensitive
on G up to G,0.2, when the process of stabilization of the
UPO begins andDf falls down to zero.

Let us now discuss on the relationship between the con-
trol of coherence and the stabilization of a specific UPO
embedded within the chaotic attractor. While the latter pro-
cess(usually calledcontrol of chaos) is strongly limited to a
very small subset of delay timesTd (those ones matching
exactly the lengths of the target periodic orbits[6,10]), the
former process is more general and robust, since it is effec-
tive also for values ofTd that are by far different from the
UPO’s periods[as it has been demonstrated in the example
of Figs. 2 and 4(b)].

When Td matches the period of some UPOs, our results
indicate that control of coherence anticipates the stabilization

FIG. 3. (a) Coherence factorC (see text for definition) in loga-
rithmic scale vs gainG in the control loop forTd=70 ms. The three
arrows indicate the values ofG at which (b)–(d) were obtained.
(b)–(d) Time-delayed embedding reconstruction of the attractor
(embedding timet=6 ms) for G=0.01 (b), G=0.12 (c), and G
=0.25 (d).

FIG. 2. (a) Coherence factorC (see text for definition) in loga-
rithmic scale vs gainG in the control loop forTd=100ms. The
three arrows indicate the values ofG at which (b)–(d) were ob-
tained. (b)–(d) Time-delayed embedding reconstruction of the at-
tractor(embedding timet=6 ms) for G=0.01(b), G=0.07(c), and
G=0.1 (d).

FIG. 4. (a)–(c) Phase diffusion coefficientDf (see text for defi-
nition) vs gain G in the control loop. (a) Td=70 ms; (b) Td

=100ms; (c) Td=140ms. The arrows in(a) and (b) refer to the
values ofG at which Figs. 2(b)–2(d) and 3(b)–3(d) were obtained.
(d) Phase diffusion coefficientDf vs the delay timeTd at fixedG
=0.98 in the feedback loop.
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of the target periodic orbit. This can be understood by con-
sidering that stabilization of a UPO implies that the trajec-
tory must repeat on the Poincaré section over an ordered
finite sequence of points at an ordered sequence of times.
This process can be realized only by a first regularization of
the sequence of recurrent times on the Poincaré section(con-
trol of coherence) occurring at weaker control strengths and
not necessarily implying a regularization the corresponding
distribution of crossing points, followed by a stabilization of
amplitudes that occurs at higher control forces and has the
result of reducing the collection of crossing points into the
finite sequence of points corresponding to the desired UPO.
Such a scenario is very much similar to what happens when
two slightly different chaotic systems are coupled. In this
case, one first obtains a PS state at weak coupling strengths,
where only phases of the subsystems are locked, while am-
plitudes are almost uncorrelated, followed by a complete or
identical synchronization state[17] at higher coupling
strengths where amplitudes lock and the chaotic trajectories
of the subsystems evolve in step with each other(this latter
state corresponding to the passage of a previously positive
Lyapunov exponent to a negative value as a function of the
coupling parameter[1,3]).

In our case, the control method first gives rise to a TDPAS
(at weaker values of the gain parameter), where only coher-
ence is controlled and the motion remains chaotic(the origi-
nally positive Lyapunov exponent remains positive), and
eventually leads to a TDAS(as it was originally named in
Ref. [6]) at higher values of the gain parameters, when the
UPO is stabilized, and the motion is no longer chaotic(hence
the originally positive Lyapunov exponent takes a negative
value).

This global scenario is confirmed also in the case ofTd
=140ms in the control loop. In this case,Td equals approxi-
mately the length of the period 2 UPO, and the whole pro-
cess leads eventually to the stabilization of the period 2
UPO. Analogously to what happens for the caseTd=70 ms,
Df experiences here a drastic reduction as the gainG is

increased and falls down to zero in correspondence with the
stabilization of the period 2 UPO[see Fig. 4(c)] that occurs
for G.0.1.

Finally, in Fig. 4(d) we reportDf vs Td at a fixed value of
G=0.98 in the feedback loop. As originally predicted in Ref.
[5], Fig. 4(d) shows that under coherence control the phase
diffusion cannot only be suppressed but also enhanced for
other specific choices of the feedback parameters. In particu-
lar, Fig. 4(d) shows thatDf is enhanced for values ofTd
close to the lengths of the UPOs, meaning that settingTd
close to the period of some UPOs, the phase diffusion coef-
ficient Df is larger than the one corresponding toTd values
not matching periods of UPOs, at least for low values ofG.
Even though enhancing phase diffusion of a chaotic oscilla-
tor is not that relevant for practical purposes, the evidence of
such a phenomenon further supports our claims for a coher-
ence control induced by the feedback.

In conclusion, we have reported, to our knowledge, the
first experimental evidence of control of coherence in a cha-
otic self-sustained oscillator, a CO2 laser system with
electro-optical modulator, where a limit cycle originated
from a Hopf bifurcation reaches a chaotic condition after a
sequence of subharmonic bifurcations. We demonstrated that
coherence control is achieved by means of application of a
delayed feedback control for various choices of the delay
time in the feedback control, including values that lead to the
stabilization of period 1 and period 2 UPOs embedded within
the chaotic attractor. In this latter case, the relationship be-
tween control of coherence and stabilization of UPOs has
been discussed.
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