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Experimental control of coherence of a chaotic oscillator
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We give experimental evidence that a delayed feedback control strategy is able to efficiently enhance the
coherence of an experimental self-sustained chaotic oscillator obtained from E$&®with electro-optical
feedback. We demonstrate that coherence control is achieved for various choices of the delay time in the
feedback control, including values that would lead to the stabilization of an unstable periodic orbit embedded
within the chaotic attractor. The relationship between the two processes is discussed.
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A very relevant feature that characterizes self-sustained In this paper we give, to our knowledge, the first experi-
oscillators is the coherence, or constancy of their oscillatiormental evidence of control of coherence in a self-sustained
frequency. Its control is a fundamental task in various pracchaotic oscillator, and we discuss how this process is related
tical applications, e.g., at the moment of improving the reli-to the stabilization of unstable periodic orbitgPOg em-
ability of electronic and optical sources, as well as for en-bedded within a chaotic attractft0].
hancing the quality of mechanical clocks. For coupled or The experimental setup is shown in Figajl It consists
forced chaotic oscillators it represents a crucial paramete®f a single mode Colaser with electro-optic feedback. Pre-
determining their capability to give rise to a phase synchrocisely, a slow flow gas mixture of COat a pressure of
nized motion[1-3]. 28 mbar, pumped by a dc discharge current of 6 (tide

Phase synchronizatiofPS refers to a process related to Pump threshold for the lasing action being 3 m# inserted
the presence of two distinct self-sustained oscillators whoswithin the laser cavity defined by a partialM,) and a
original different rhythms are adjusted by means of a weakotally (M,) reflecting mirror. The cavity houses also an an-
coupling, even when the corresponding amplitudes are onlfireflection coated CdTe electro-optic modula{&OM) for
feebly correlated. In the chaotic case, it has been shown thamplitude modulations. The laser output intensity is detected
PS occurs only for some phase coherent oscillaftrg], by a fast HgCdTe diode detectbr whose electric output is
while systems having a rather broad distribution of timesent into a feedback loop, including an amplifieand a bias
scales in their unstable periodic orbits only display imperfectvoltageB,. The output of the amplifier is taken to drive the
PS[4]. EOM component. It is known that depending on the two

By calling ¢(t) the phase of an oscillator, phase coherencecontrol parameters of the feedback logpe gainR and the
can be quantified by means of the so-called phase diffusiohias voltageB, on the amplifiey, different chaotic regimes
coefficient can be observed for the behavior of the laser output intensity

[11,12. In this work we set the control parameters in condi-
1 tions where the laser intensity is locally confined around an
Dy t'mﬁw(t) — ()1, () unstable fixed pointR=9 andBy=400 mV). In these condi-
tions a chaotic regime is reached after a sequence of subhar-
where(- --) stays for a time average. While the above defini-monic bifurcations on a limited cycle originated from a Hopf
tion rigorously holds only for periodic oscillators subjected bifurcation[13]. The resulting temporal evolution of the la-
to noisy Gaussian fluctuations, it has been recently propose®er intensityl can be seen in Fig.(). Furthermore, a time
that such a measure could also be applied for chaotic oscifelayed embedding reconstruction of the corresponding at-
lators, under the assumption that the deterministic chaotitractor(with embedding timer=6 us) is shown in Fig. {c).
fluctuations of the phase could be considered as noisy Gausk} these experimental conditions, the dynamics can be con-
ian contributiong3,5]. In particular, it has been numerically veniently represented by a six-variable model sysfé#.
shown that a delayed feedback control stratégy may F_or the parameters used in our experiment, such a model
modify the value oD, for nonphase coherent chaotic oscil- gives a maximum Lyapunov exponehtof about 11 900 g,
lators, leading in some cases to an enhancement of the cdhe corresponding Lyapunov tim@/A) amounts to about
herence of the motioff], inducing a drastic reduction @, 1.2 times the length of the period 1 URD; =70 us).
and allowing such otherwise nonphase synchronizable oscil- In order to control the coherence of the chaotic oscillator,
lators to eventually phase synchronize with external forcingswe use a second feedback loop, consisting of a digital delay
The fact that control of coherence can improve phase syrine with 12 bit amplitude resolution and a delay tifigthat
chronizability is a relevant property, since PS of chaotic sys€an be set with 0.5s of resolution. The difference between
tems is a rather ubiquitous phenomenon in nafifiie in  the laser output intensity signélit) and its delayed version
controlled laboratory experimen(8], and in space extended |(t-Ty) is amplified with a gainG and used as an additive
or infinite dimensional systen{9]. signal in the main feedback lodpee Fig. 1a)]. This scheme
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FIG. 1. (a) Experimental setupM; and M,,
mirrors; EOM, electro-optical modulatoB, di-
‘ ode detectorTy, delayer;G and R, amplifiers;
: andB,, applied bias voltaggb) Snapshot of the

time sequence of the output intensltyin arbi-
trary unitg for the uncontrolled case. The dashed
line represents the level taken for determining
passages onto the Poincaré sectiwith the ad-
ditional condition of the signal having a positive
1 temporal derivative Points depict the sequence
00 EET (ms) T0 of passage time_s onto the F_’oincaré section. The
arrow marked with the labet illustrates the way
in which the sequence of time intervals between
two successive crossings of the Poincaré section
has been obtainedc) Time-delayed embedding
reconstruction of the attractor corresponding to
the uncontrolled case. Both axes are in arbitrary
units. The embedding time is=6 us. (d) Error
function Er(Ty) (in arbitrary units, see text for
definition) vs Ty (in micro secony calculated
from a long data series of the output intensity
with no feedbackKG=0).

Control loop

25 50 7'51—d (ns)100 125 150 75 200

is an experimental implementation of the so-callsde- rent times or crossing time intervals on the Poincaré section
delayed autosynchronizatioff DAS) method proposed by (7,=t,-t,_1). The values oP has been carefully selected to
Pyragas[6], which is able to stabilize UPOs embedded assure that the signal encounters the Poincaré section once at
within the chaotic attractor, for suitable choicesTgfandG. each oscillation.

The reliability of TDAS for UPOs stabilization in lasers was By linear interpolation between successive crossings on
experimentally proven in both the externally drivib] and  the Poincaré section, the sequelieg gives immediately a

the autonomoug§l4] cases. measure of the instantaneous phage of the chaotic oscil-
The unperturbed chaotic dynamics embeds an infinitgator [3],

number of UPOs. In Fig. (@) we report the error function

Err(Tg)=(1/N)Zizy, nI(t)=1(t;=Ty)| for an N=5000 data t— 7
series of the output time intensityt) with no feedback G $(t) = 2mk + 2
=0) and sampled with a time intervgl-t,_;=0.4 us. The

local minima of ErfTy) mark the values off4 that corre- Where the integek marks thekth crossing of the trajectory
spond to UPO’s periods. In particular, Figdl shows that on the Poincaré section.

the length of the period {the period 2 UPOs is approxi- By recording long sequences of recurrent tinfaout
mately equal tal4=70 us (T4=140 us). In the following we 10 000 for each measuremgnive are able to calculate the
will set the delay timeT, of the control loop at 70, 100, and Phase diffusion coefficieritl), as well as the coherence fac-
140 us, and vary the gai for the three cases. In particular, ©OF [16]

fixing T4=70 us (T4=140 us), i.e., matching the period;

(e <t < Teea), )
T+l ~ Tk

(the periodT,), and increasinds would eventually lead to C= L (3)

the stabilization of period 1of period 2 UPO, while for Lo,V

T4q=100, we are in working conditions in which no UPOs

can be stabilizedias it can be seen from Fig(d)]. where(7)(ay,,) denotes the average valdbe standard de-
In all measurements, we introduce a suitable thresholdiation) of the distribution of the recurrent timés,}.

0 =0.205. When the output intensity crosg@sfor the nth We start by settindgl4=100 us and gradually increasing

time with a positive temporal derivative, we associate suchs. In this condition,Ty is far from matching the length of the

an event to theith crossing of the chaotic trajectory on the period 1 UPO, and therefore no values@fcan stabilize a
Poincaré section of the attractor, and record the correspond}PO. Figure 2a) reports the coherence factGr[Eqg. (3)] in

ing value of the time,,. As illustrated in Fig. tb), this strat- logarithmic scale vs the gai@ in the control loop. As it can

egy allows us to easily calculate the sequefigg of recur-  be seen the coherence factor increases monotonically, as the
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FIG. 2. (a) Coherence facto€ (see text for definitionin loga- Ty (ms)
rithmic scale vs gairG in the control loop forTy=100 us. The o o ]
three arrows indicate the values 6f at which (b)«d) were ob- FIG. 4. (@c) Phase diffusion coefficier,, (see text for defi-

tained. (b)~(d) Time-delayed embedding reconstruction of the at-Nition) vs gain G in the control loop.(@ Tq=70us; (b) Ty

tractor (embedding timer=6 us) for G=0.01(b), G=0.07(c), and  =100us; (¢) T¢=140us. The arrows in@ and (b) refer to the

G=0.1(d). values ofG at which Figs. 2b)-2(d) and 3b)-3(d) were obtained.
(d) Phase diffusion coefficierid, vs the delay timeT at fixed G

gain factor increases. Figure 2 shows time delayed embed:0-98 in the feedback loop.

ding reconstructions of the attractor f@=0.01 (b), G i, 4 giant improvement of the coherence of the motion, in
=0.07(c), andG=0.1(d). Looking at Fig. Zc), one easily \yhich D, is reduced by almost two orders of magnitude.
reallzgs thaF the contr.ol Ioop_ forces the appearance of a still A different scenario emerges when settifige 70 s in
chaotic motion, but with a higher coherence with respect t@he control loop. NowT4 matches exactly the length of the
the unperturbed dynamics. Furthermore, by comparing Figgeriod 1 UPO, and therefore the control loop eventually
2(c) with Fig. 2(b), it can be seen that the main topological leads to the stabilization of such a UPO 8r>0.3. As a
features of the chaotic attractor are only weakly changediesult, coherence control here can be seen as a preliminary
despite an improvement of a factor 5 in the coherence factocontrol step in the transition toward the stabilization of the
A further increase in the gain factor produces a highly coherperiod 1 UPO. The coherence factGrin logarithmic scale
ent motion that is developing very close to a limit cyfiég.  vs G is reported in Fig. @&). Initially (G=<0.1) there is no
2(d)], thus destroying the main topological features of theapparent improvement in the coherence of the recurrent
original attractor. times sequence. A typical attractor in this regime is shown in
A more quantitative analysis of the situation can be ex-Fig. 3b). Around G=0.12 the system sets in a chaotic state
tracted by looking at Fig. @), where the phase diffusion c_orrespondlng to an even Iess_coherent_:e in the recurrent
coefficientD,, [Eq. (1)] is reported vs the gaifG. In this times sequence. The corresponding chaotic attractor is shown

figure, one can see that increasi@grom 0.01 to 0.1 results N Fig. 3(c). Finally, for G>0.12 we enter the stabilization
process of the period 1 UPO, in which the coherence factor

increases monotonically. Figuréd} shows the time-delayed

. N b i p !
(@) ( embedding reconstruction of the attractor just before the con-
fd =08 trol of the period 1 UPO.
o . E=7N The phase diffusion coefficient behavior is reported in
‘b Fig. 4(a), where one observes a drastic reductioDjnin the
. ""'"r- 01 e range 6<sG=0.08. Later,D, seems to be quite insensitive
e XTI on G up to G~0.2, when the process of stabilization of the

UPO begins an®,, falls down to zero.

(e ¢ (o) Let us now discuss on the relationship between the con-
103 trol of coherence and the stabilization of a specific UPO
., ﬂ embedded within the chaotic attractor. While the latter pro-
cess(usually calledcontrol of chaois strongly limited to a
; o1 very small subset of delay timeg; (those ones matching
o1 0z |os o4 01 oz |08 o4 exactly the lengths of the target periodic orbi610Q]), the

former process is more general and robust, since it is effec-
FIG. 3. (a) Coherence facto€ (see text for definitionin loga-  tive also for values offy that are by far different from the
rithmic scale vs gailG in the control loop fofTy=70 us. The three UPO’s periodgas it has been demonstrated in the example
arrows indicate the values @ at which (b)~(d) were obtained. Of Figs. 2 and &)].
(b)«d) Time-delayed embedding reconstruction of the attractor When T4 matches the period of some UPOs, our results
(embedding timer=6 us) for G=0.01 (b), G=0.12 (¢c), and G indicate that control of coherence anticipates the stabilization
=0.25(d).
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of the target periodic orbit. This can be understood by conincreased and falls down to zero in correspondence with the
sidering that stabilization of a UPO implies that the trajec-stabilization of the period 2 UP@see Fig. 4c)] that occurs
tory must repeat on the Poincaré section over an orderefdr G>0.1.

finite sequence of points at an ordered sequence of times. Finally, in Fig. 4d) we reportD , vs T at a fixed value of
This process can be realized only by a first regularization of3=0.98 in the feedback loop. As originally predicted in Ref.
the sequence of recurrent times on the Poincaré seawn  [9], Fig. 4d) shows that under coherence control the phase
trol of coherenceoccurring at weaker control strengths and diffusion cannot only be suppressed but also enhanced for
not necessarily implying a regularization the correspondin ther_specmc choices of the_feedback parameters. In particu-
distribution of crossing points, followed by a stabilization of /&% Fig. 4d) shows thatD, is enhanced for values dfy
amplitudes that occurs at higher control forces and has th‘éIose to the 'ef!gths of the UPOs, meaning thf"‘t sgﬂT@g
result of reducing the collection of crossing points into theC.IO.se o th_e period of some UPOs, the phas_,e diffusion coef-
finite sequence of points corresponding to the desired UPd'.Clent Dy is larger than the one correspondingTigvalues

Such - h similar to what h h riot matching periods of UPOs, at least for low valuessof
uch a scenario 1S very much similar {o what happens wneg, though enhancing phase diffusion of a chaotic oscilla-
two slightly different chaotic systems are coupled. In this

tor is not that relevant for practical purposes, the evidence of

case, one first obtains a PS state at weak coupling str_engtl’glch a phenomenon further supports our claims for a coher-
where only phases of the subsystems are locked, while ans,ce control induced by the feedback.

plitudes are almost uncorrelated, followed by a complete or | conclusion, we have reported, to our knowledge, the
identical synchronization stat¢17] at higher coupling first experimental evidence of control of coherence in a cha-
strengths where amplitudes lock and the chaotic trajectoriegiic  self-sustained oscillator, a GOlaser system with
of the subsystems evolve in step with each oiltkis latter  g|ectro-optical modulator, where a limit cycle originated
state corresponding to the passage of a previously positivom a Hopf bifurcation reaches a chaotic condition after a
Lyapunov exponent to a negative value as a function of thgequence of subharmonic bifurcations. We demonstrated that
coupling parametefl,3)). o _ coherence control is achieved by means of application of a
In our case, the control method first gives rise to a TDPASjg|ayed feedback control for various choices of the delay
(at weaker values of the gain paramgtevhere only coher-  ime'in the feedback control, including values that lead to the
ence is controlled and the motion remains chag@tie origi-  gtapjlization of period 1 and period 2 UPOs embedded within

nally positive Lyapunov exponent remains posilivand  the chaotic attractor. In this latter case, the relationship be-
eventually leads to a TDA%as it was originally named in tyeen control of coherence and stabilization of UPOs has
Ref. [6]) at higher values of the gain parameters, when th§)aen discussed.

UPO is stabilized, and the motion is no longer chagtience
the originally positive Lyapunov exponent takes a negative The authors thank F. T. Arecchi, A. Pikovsky, and
value). K. Pyragas for many helpful discussions on the subject, and
This global scenario is confirmed also in the casel@f P. Poggi for the help in the realization of the digital
=140 us in the control loop. In this cas&y equals approxi- delay line within the control loop. This work was partly
mately the length of the period 2 UPO, and the whole prosupported by EU Contract No. HPRN-CT-2000-00158
cess leads eventually to the stabilization of the period 2ZCOSYC of SEN$ and MIUR-FIRB Contract No.
UPO. Analogously to what happens for the cdge70 us, ¥ RBNEO1CW3M_001. E.A. acknowledges support from
D, experiences here a drastic reduction as the @aiis  MIUR-FIRB Contract No. RBAUO1B49F_002.
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